This discussion focUges on the valuation
of internally:developed software.

ROBERT F. REILLY, CPA

‘of Compute : 6 l are

l

16 JOURNAL OF MULTISTATE TAXATION AND INCENTIVES

In some

taxing jurisdictions,

the internally developed computer soft-
ware of an industrial or commercial tax-
payer company may be exempt from ad
valorem state and local taxation (SALT).
In these situations, the SALT property
assessment should not include the vatue
of the taxpayer’s internally developed
software.

In this discussion, we assume that the
taxpayer is the type of company that is
subject to property taxation based on the
unit valuation principle. Such taxpayers
often own property that cross over more
than one taxing jurisdiction (like a tele-
phone company, a railroad, or an inter-
state pipeline). Or, such taxpayers own
property that is physically, functionally,
and economically integrated (like an oil
refinery, a cable TV system, or a water or
wastewater system). In these instances,
unless adjusted, the taxpayer’s unit value
conclusion typically includes the value of
(1) all of the taxpayer’s tangible property
and (2) all of the taxpayer’s intangible
property.

If the taxpayer is located in a jurisdic-
tion that taxes tangible property only, then
the taxing authority should adjust the tax-
payers total unit value for the value of any
intangible personal property (such as in-
ternally developed software).

This discussion focuses on the gener-
ally accepted approaches and methods
that valuation analysts (“analysts™) use to
value internally developed software for
property tax purposes. This discussion
focuses on the application of the cost ap-
proach, and specifically the replacement
cost new less depreciation (RCNLD)
method, to value taxpayer software.

Introduction

Some taxing jurisdictions tax the com-
mercial taxpayer’s intangible personal
property for ad valorem SALT purposes.
Some taxing jurisdictions tax all of the

ROBERT F. REILLY is a managing director of
Willamette Management Associates in the firm’s
Chicago, Illinois, office and can be reached at (773)
399-4318 or rfreilly@willamette.com.

18 JOURNAL OF MULTISTATE TAXATION AND INCENTIVES

tangible property and all of the intangi-
ble property of commercial taxpayers. In
these taxing jurisdictions, a taxpayer’s in-
ternally developed software would be sub-
jectto SALT.

However, many taxing jurisdictions
only tax tangible property—that is, the
real estate and/or tangible personal prop-
erty—of industrial and commercial tax-
payers. In these jurisdictions, the value
of a taxpayer’s intangible personal prop-
erty (including internally developed soft-
ware) would not be subject to property
taxation. Taxpayers in these jurisdictions—
especially industrial and commercial tax-
payers subject to the unit principle of
property valuation—should exclude the
value of such software from the total bun-
dle of property subject to taxation.

This discussion focuses on the valua-
tion of internally developed software.
There are generally accepted methods
within the cost approach, the market ap-
proach, and the income approach meth-
ods to value software source code. This
discussion focuses on the application of the
cost approach, and, in particular, the
RCNLD valuation method. The RCNLD
method is often applied to value inter-
nally developed software source code and
associated documentation and databases.

This discussion (1) describes software
and (2) summarizes the cost approach
RCNLD method. For the valuation of soft-
ware, analysts often apply software de-
velopment effort estimation models to
estimate the amount of time required to re-
place the software. In particular, this dis-
cussion focuses on use of the COCOMO
model and the SLIM model (defined
below) to apply the cost approach. This
discussion also presents an illustrative ex-
ample of the application of the RCNLD
method to value software and associated
intangible property.

Definition of Software for
Property Tax Purposes

Software is sometimes defined as the pro-
grams that tell the computer what to do.
The broadest definition is that software

February 2020

AN

includes everything that is not hardware.
In Revenue Procedure 69-21, the Inter-
nal Revenue Service (the “Service”) de-
fines software as follows:

All programs or routines used to cause
a computer to perform a desired task or
set of tasks and the documentation re-
quired to describe and maintain those
programs. Computer programs of all
classes, for example, operating sys-
tems, executive systems, monitors,
compilers, and translator assembly
routines, and utility programs, as well
as application programs are included.
“Computer Software” does not include
procedures which are external to com-
puter operations, such as instructions
to transcription operators and external
control procedures.

Determining If the

Software Is Taxable

The determination of whether software
is intangible personal property is some-
times the subject of controversy in the
property tax discipline. State taxing au-
thorities have attempted to address this
issue. These attempts have resulted in in-
consistent state-specific rules and meth-
ods to which analysts and taxpayers look
for guidance in determining what por-
tion (if any) of software is taxable and

PROPERTY TAX

EXHIBIT 1
Valuation Summary

Omega Gas Transmission Company
Internally Developed Software
Cost Approach

Replacement Cost New Less Depreciation Method

Valuation Summary
As of January 1, 2019

Replacement

Exhibit Cost New less
Replacement Cost New less Depreciation Development Effort Component Reference Depreciation Component
COCOMO Model Person-Month Development Effort Estimate (net of obsolescence) [a] 5 2,487 Months
SLIM Model Person-Month Development Effort Estimate (net of obsolescence) [a] 6 1,911 Months
Selected Software Person-Month Development Effort Estimate [b] 2,199 Months
Software Person-Month Development Effort Estimate 2,199
Full Absorption Cost per Person-Month 2 S 10,440
Software Replacement Cost New Indication $ 22,954,945
Less: Additional Functional Obsolescence S -
Less: Economic Ohsolescence $ i
Equals: Software Value (rounded) $ 23,000,000

[a] For purposes of this simplified illustratlve example, economic obsolescence is assumed to be O percent,
[b] Average of COCOMO indicated person-months and SLIM indicated person-months.
Note: These data are hypothetical and are presented for illustrative purposes only.

what portion of software is not subject to
taxation.

When valuing software for property
tax purposes, it is important to determine
whether the software is taxable or not tax-
able. Most taxpayer companies own and
operate software that was either:

1. purchased {rom a seller and optimized
for the taxpayer operations, or

2. internally developed by the taxpayer
information technology (IT) person-
nel.

Some states assess property tax on in-
ternally developed software. Virginia, for
example, specifically defines “computer
application software” as taxable intangible

PROPERTY TAX

personal property.2 In general, most states
do not tax intangible personal property.
Taxpayers typically take the position that
the source code and related documenta-
tion of the software is intangible personal
property and should not be subject to
property taxation.

The following three general criteria
have been developed by state courts and
taxing authorities to determine whether
software source code is either tangible
personal property or intangible personal
property:

1. Whether the taxpayer purchased a tan-
gible storage medium versus the in-
tangible knowledge contained within.

February 2020

2. Whether the software is operating (or
“operational”) software or application
software.

3. Whether the software is internally de-
veloped or “bundled”

Criterion one. The first criterion, which is

sometimes called the “container test, fo-

cuses on a substance-over-form inquiry in-
volving two components:

1. A physical storage medium (e.g,, a com-
pact disc, digital versatile disc, or a
magnetic tape).

2. The knowledge and/or information
contained on the storage medium.

JOURNAL OF MULTISTATE TAXATION AND INCENTIVES 19

EXHIBIT 2
Full Absorption Cost per Person-Month

Omega Gas Transmission Company
Internally Developed Software
Cost Approach
Replacement Cost New less Depreciation Method
Software Development Personnel
Full Absorption Cost per Person-Month
As of January 1, 2019

Software
Software Development Actual Cost Components Development

Personnel
Actual Headcount: 132
Actual Costs:
Salaries 8,500,000
Employee Benefits 1,625,000
Bonuses 525,000
Overhead 3,412,500
Total Actual Annual Cost 14,062,500
Monthly Cost per Person:
Total Actual Annual Cost 14,062,500
Divided by: Headcount 132
Annual Cost per Person 106,534
Divided by: 12 Months 12
Direct and Indirect Cost per Person-Month 8,878
Computer Software Developer's Profit [a] 5%
Direct Cost, Indirect Cost, and Developer's Profit per Person-Month 9,322
Direct Cost, Indirect Cost, and Developer's Profit Cost per Person-
Month e
Entrepreneurial Incer.1tive as a Percent of Direct Cost, Indirect Cost, 12%
and Developer's Profit [a]
Full Absorption Cost per Person-Month 10,440
Full Absorption Cost per Person-Month (rounded) 10,400

[a] Determined by the analyst (detalls not presented).
Source: Taxpayer-provided costs and headcount and analyst calculations.

Note: These data are hypothetical and are presented for illustrative purposes only.

20

JOURNAL OF MULTISTATE TAXATION AND INCENTIVES February 2020

In this context, intangible information
refers to the digital manifestation of human
knowledge in the form of the software
code. The code instructs a microproces-
sor to perform computational tasks that
alter and communicate this intangible in-
formation.

In the early years of computing, tax-
ing authorities sought to characterize soft-
ware by the tangible medium in which it
was stored and distributed. The container
test examined:

1. whether the intangible information
(that is, the software code) contained
within a tangible medium is a signifi-
cant factor for property tax purposes,
and

2. whether the tangible medium may be
considered incidental to the purchase
of that intangible information.

The container test is less relevant in a
modern IT environment. This is because
the use of a tangible storage medium for
software distribution has declined. Source
code is directly downloaded to comput-
ers or accessed on demand from servers in
a cloud network. These methods of soft-
ware distribution have made many forms
of physical distribution unnecessary.

An example of the application of the
container test occurred in 1996 when the
Texas Court of Appeals ruled that soft-

PROPERTY TAX

ware was considered intangible property,
and, therefore, not subject to ad valorem
property taxation.” That court concluded
that the software was intangible. This was
because the “essence of the transaction”
was not in the tangible medium that was
used to transport the software to the con-
sumer (for example, a disk or CD-ROM)
but rather the software that it contained.
“Computer application software;” the court
reasoned, is considered intangible per-
sonal property consisting of unperceiv-
able binary pulses, programs, routines,
and symbolic mathematical code that con-
trol the function of computer hardware
and direct hardware operations. There-
fore, software was not subject to property
taxation as tangible personal property.

Criterion two. A number of states have em-
phasized a second criterion that focuses on
how separable the software is from the
hardware on which it operates. Some states
insist that software is essentially insepa-
rable from the tangible hardware on which
it operates. For example, the Ohio Supreme
Court upheld the Ohio Department of
Taxation position that all software was
subject to property taxation under the
reasoning that the coded instructions are
always stored in some form of physical
memory—a tangible medium—when op-

PROPERTY TAX

eratingina computer.4 Therefore, in Ohio,
all internally developed software may be
subject to property taxation.

In other states, the issue of the ability
to separate software from the computer
usually takes the form of classifying soft-
ware as either:

1. operating software or
2. application software.

Operating software is generally re-
quired in order for the computer to func-
tion properly. Sometimes operating
software is described as “embedded” soft-
ware or “firmware” This label is based on
the fact that the software is coded into
memory chips attached directly to the cir-
cuit board of a computing device.

A laptop computer contains embed-
ded software in the form of a basic input
output system (BIOS). A BIOS is perma-
nently stored in a memory chip ona com-
puter motherboard (the primary circuit
board). It is automatically executed when
the computer is turned on. The BIOS
serves as the fundamental operating sys-
tem (OS) for managing the microproces-
sor(s) on the motherboard and the
peripheral devices that attach to the moth-
erboard. For a laptop computer, these at-
tached devices may include a hard drive,
a video graphics card, a keyboard, and a
touchpad.

Depending on the taxing jurisdiction,
operating software may have a more ex-
pansive definition. That more expansive
definition includes a general-purpose OS
that works in conjunction with the BIOS.

The Kansas Department of Revenue
described the distinction between oper-
ating software and application software
as follows:

The Kansas Supreme Court has held
that software programs are taxable if
they are operational programs; pro-
grams the computer cannot operate
without. These programs are considered
an essential portion of the computer
hardware and are taxable as tangible
personal property in conjunction with
the hardware. On the other hand, ap-
plication programs, which are partic-
ularized instructions, are intangible
property, which is not subject to taxa-
tion in Kansas.

The California State Board of Equal-
ization has concluded the following with
regard to criterion two:

In general, software is classified as

nontaxable property. The one exception
to this general rule is software that is

February 2020

considered a “basic operational pro-
gram” or “control program.” These
terms refer to a compufer program that is
fundamental and necessary to the func-
tioning of a computer. All other software
(sometimes called application software)
is nontaxable. But if the application soft-
ware comes bundled with the computer
hardware or other equipment at a sin-
gle price and the taxpayer does not pro-
vide the assessor with information that
will enable the assessor to separately es-
timate its value, then the assessor may
consider the total bundled price as in-
dicative of the value of the taxable
tangible property.

Asasimple illustration, a laptop first ex-
ecutes a BIOS when the laptop is turned
on. In some taxing jurisdictions, this BIOS
may be considered tangible personal prop-
erty that is subject to property taxation.
Once the laptop has started operating, a
user may decide to execute an application
such as Microsoft Office. Microsoft Of-
fice may qualify as tax-exempt applica-
tion software. This is because such software
executes “on top” of the BIOS, and it is not
required for the computer to operate. That
is, the laptop will function normally re-
gardless of whether Microsoft Office is
installed. The classification of the Win-
dows OS, which also executes on top of
the BIOS, as taxable operating software
or as nontaxable application software may
vary by taxing jurisdiction.

This interplay of embedded opera-
tional software and general purpose op-
erating systems may lead to complicated
tax rules. The operating software/appli-
cation software dichotomy only offers a
general guideline. However, not all oper-
ating software is subject to property tax
and not all application software is tax ex-
empt.

Criterion three. The third criterion classi-

ties software as either:

1. software that is developed for internal
use or

2. software that is developed for com-
mercialization (that is, for resale)—

“bundled” software.

Bundled software typically includes
software that is licensed to others and may
be held by the developer as inventory.
Under some state property tax statutes,
internally developed software is taxed,
while bundled software is not. An exam-
ple of bundled software is the Microsoft
Office software suite. If a taxpayer com-
pany purchases Microsoft Office along

JOURNAL OF MULTISTATE TAXATION AND INCENTIVES 21

with a new laptop computer, the value of
Microsoft Office ordinarily would not be
included in the tax base (lets assume that
the subject taxing jurisdiction excludes
bundled software), while the value of the
laptop itself would be included as tangi-
ble property.

This concept is fairly consistent with the
operational software/application software
distinction. The distinction in this crite-
rion becomes more evident if the analyst
considers that the taxpayer may be taxed
on its laptop software if it instead inter-
nally develops an application with word
processing and other office productivity
features. Under this criterion, taxability
depends on the issue of customization,
not on whether the software is applica-
tion software.

In practice, discerning between inter-
nally developed software and bundled
software may be difficult. It may be dif-
ficult to determine the taxability of the
software when the analyst considers the
many ways in which software can be cre-
ated, modified, and distributed. If a soft-
ware developer creates software for a
particular customer’s needs that will not
be resold to others, it may be considered
internally developed software. However,
if the developer creates the same software
for a chain of franchise businesses and
then licenses the software individually
to 100 franchisees, some taxing jurisdic-
tions may classify the software as having
been developed for commercialization.
This result may occur even though the
customers belong to the same franchise
chain.

Software Valuation
Approaches and Methods

As summarized below, there are three gen-
erally accepted approaches to intangible
personal property valuation:

1. Cost Approach—The cost approach
estimates the value of intangible property
as the cost (in terms of current dollar ex-
penditures) required to create a property
with equivalent utility and functionality
as the actual property. Analysts typically
consider the following cost components
in a cost approach analysis: direct costs,
indirect costs, developer' profit, and en-
trepreneurial incentive.

If the replacement property is supe-
rior to the actual property, then allowances
may be made for the various forms of ob-

22 JOURNAL OF MULTISTATE TAXATION AND INCENTIVES

solescence, including functional (includ-
ing technological) obsolescence and ex-
ternal (including economic) obsolescence.

2. Market Approach—The market ap-
proach estimates the value of intangible
property based on valuation pricing mul-
tiples derived from the market-based
armis-length sale or license transactions
involving either comparable or guideline
intangible property. Typically, individual
intangible property is not bought and sold
in fee simple interest. Accordingly, in-
tangible property sale transactional data
are not often readily available.

However, many intangible properties
(such as trademarks, copyrights, and
patents) are licensed in arms-length trans-
actions. When available, these transac-
tional data fay be used to prepare a
market approach analysis.

3. Income Approach—The income
approach recognizes the prospective rev-
enue, expense, profitability, and invest-
ments associated with the ownership of
intangible property. This approach esti-
mates the value of an intangible prop-
erty as the present value of future income.
That income may be defined as operat-
ing income, net income, net cash flow,
operating cash flow; or some other meas-
ure of income, and that income may be es-
timated over the property’s expected
useful economic life (UEL).

This expected income stream is brought
to a present value by the use of an appro-
priate market-derived, risk-adjusted rate
of return.

This discussion focuses on the appli-
cation of the cost approach, and specifically
the RCNLD method.

Cost Approach

The cost approach concludes a value for the
software based on some measure of cost.
The cost measures that are typically ap-
plied in the cost approach include the fol-
lowing:

1. Reproduction cost new (RPCN)

2. Replacement cost new (RCN)

The RPCN reflects the cost to create
an exact replica of the taxpayer’s software.
The RPCN reflects the cost to create the
functionality or utility of the software, in
a form that is identical to the actual soft-
ware. Functionality refers to the ability of
the taxpayer software to perform the task
for which it was designed. Utility refers
to the ability of the taxpayer software to

February 2020

provide an equivalent amount of satis-
faction to the user or beneficiary of the
actual software.

The RCN refers to the cost to create
the functionality or utility of the taxpayer
software, but in a form or appearance that
may be quite different from the taxpayers
actual software. While the replacement
software performs the same task as the
taxpayer software, the replacement soft-

Rev. Proc. 69-21,1969-2 C.B. 303.
" Rulings of the Tax Commissioner, Virginia Department
of Taxation, Document 13-47 (April 4, 2013),
See Dallas Cent. Appraisal Dist. v. Tech Data, 930 SW.2d
19 (Tex. App. 1996),
See Andrew Jergens Co. v. Tax Comm’, 848 N.E.2d 499
(Ohio 2006).
See https://law.justia.com/cases/kansas/supreme-
court/1986/58-619-1.htmL
See https:/ /www.boe.ca.gov/proptaxes/embedded_soft-
ware.htm,
Capers Jones, Estimating Software Costs: Bringing Real-
ism to Estimating, 2nd ed. (New York: McGraw-Hill, 2007),
8.
Id., 9.
For a detailed description of COCOMO, see Barry W.
Boehm, Software Engineering Economics (New York:
Prentice-Hall, 1981).
For a detailed description of COCOMO I, see Boehm, et
al, Software Cost Estimation with COCOMO Il (New
York: Prentice-Hall PTR, 2000).
See http://sunset.usc.edu/csse/research/COCO-
MOlI/cocomo_main.html.
Robert F. Reilly and Robert P. Schweihs, Guide to Intan-
gible Asset Valuation (New York: American Institute of Cer-
tified Public Accountants, 2013), 229,

PROPERTY TAX

ware is often superior (in some way) to
the actual software. That is, the replace-
ment software may yield more satisfac-
tion. If this is the case, the analyst may
adjust for this factor in an obsolescence
estimation. Adjustments for obsolescence
are discussed below.

The methods that analysts may use to
estimate the software RPCN or RCN in-
clude the following:

1. The trended historical cost
2. The software engineering development
effort estimation models

Trended historical cost. In this method,
actual historical software development
costs are identified and quantified. These
actual costs are then “trended” through
the valuation date by an appropriate in-
flation-based index factor. The analyst
ordinarily includes all costs associated
with the software development.

An allocation of taxpayer overhead
costs and the cost of employee fringe ben-
efits ordinarily may be included in addi-
tion to employee payroll costs if the
taxpayer personnel are employed in tasks
related to the software development.

Historical costs ordinarily should in-
clude (or should be adjusted to include)
an allowance for the developer’s profit on
the software development project, an al-

PROPERTY TAX

EXHIBIT 3

COCOMO 11.2000 Variables

Omega Gas Transmission Company
Internally Developed Software
Cost Approach

COCOMO 11.2000 Variables
As of January 1, 2019

Replacement Cost New less Depreciation Method

Effort Multipliers Very Low Low Nominal | High [VeryHigh EH)::;;
RELY 0.9 1.00 1 110 1.26

DATA 0.90 1.00 114 1.28

CPLX - Control 0.73 0.87 1.00 117 1.34 1.74
CPLX - Computations 0.73 0.87 1.00 117 1.34 1.74
CPLX - Device 0.73 0.87 1.00 117 1.34 1.74
CPLX - Data 0.73 0.87 1.00 1.7 1.34 1.74
CPLX - User 0.73 0.87 1.00 117 1.34 1.74
RUSE 0.95 1.00 1.07 115 1.24
DOCU 0.81 0.91 1.00 m 1.23

TIME 1.00 1m 1.29 1.63
STOR 1.00 1.05 117 1.46
PVOL 0.87 1.00 115 1.30

ACAP 1.42 119 1.00 0.85 0.7

PCAP 1.34 115 1.00 0.88 0.76

PCON 1.29 112 1.00 0.90 0.81

AEXP 1.22 110 1.00 0.88 0.81

PEXP 119 1.09 1.00 0.91 0.85

LTEX 1.20 1.09 1.00 0.91 0.84

TOOL 117 1.09 1.00 0.90 0.78

SITE - Collocation 1.22 1.09 1.00 0.93 0.86 0.80
SITE - Communications| 1.22 1.09 1.00 0.93 0.86 0.80
SCED 1.43 114 1.00 1.00 1.00
Scaling Factors:

PREC 496 | 372 ‘

FLEX 4.05 3.04 2.03

RESL 7.07 5.65 4.24 2.83

TEAM 5.48 4.38 3.29 219

PMAT 7.80 6.24 4.68 3.12 1.56 0.00

Note: These data are hypothetical and are presented for illustrative purposes only.

February 2020

JOURNAL OF MULTISTATE TAXATION AND INCENTIVES

23

EXHIBIT 4
Cost Driver Ratings
Omega Gas Transmission Company
Internally Developed Software
Cost Approach
COCOMO 11.2000 Effort Multipliers and
Scaling Exponents
As of January 1, 2019
Computer Software Programs
Program 1 Program 2 Program 3
Rating Effort |Rating Effort |Rating Effort
Software Development Cost Drivers [a] Multiplier| [al Multiplier| [a] Multiplier
PRODUCT FACTORS
RELY Required System Reliability L 0.92 N 1.00 H 1.00
DATA | Data Base Size N 1.00 N 1.00 N 1.00
CPLX | Software System Complexity) 0.89 0.92 0.92
Complexity - Control Operations v N L 0.87 VL 0.73
Complexity - Computational Operations VL [1.00 L 0.87 N 1.00
Complexity - Device-Dependent Operations N]0.73 N 1.00 L 0.87
Complexity - Data Management Operations N [1.00 N 1.00 N 1.00
Complexity - User Interface VL |[1.00 L 0.87 N 1.00
RUSE | Required Reusability N |0.73 1.00 N 1.00 N 1.00
DOCU | Documentation Match to Life-Cycle Needs N 1.00 VL 0.81 N 1.00
COMPUTER FACTORS
TIME Execution Time Constraint N 1.00 N 1.00 N 1.00
STOR | Main Storage Constraint N 1.00 N 1.00 N 1.00
PVOL | Platform Volatility L 0.87 N 1.00 L 0.87
PERSONNEL FACTORS
ACAP | Analyst Capability N 1.00 VH 0.71 N 1.00
PCAP | Programmer Capability VH 0.76 H 0.88 H 0.88
PCON | Personnel Continuity N 1.00 N 1.00 VH 0.81
AEXP | Applications Experience VH 0.81 H 0.88 H 0.88
PEXP | Platform Experience H 0.91 N 1.00 H 0.91
LTEX Language and Tool Experience N 1.00 N 1.00 N 1.00
PROJECT FACTORS
TOOL | Use of Software Tools VH 0.78 N 1.00 N 1.00
SITE Multisite Development 0.80 1.00 mm
Site Collocation EH |0.80 N 1.00 N 1.00
Communications Support EH |0.80 N 1.00 VL 1.22
SCED | Required Development Schedule H 1.0 N 1.00 N 1.00
Product of the Effort Multipliers 0.25 0.4 0.56
- . Scale A Scale . Scale
Scale Drivers Rating Factor Rating Factor Rating Factor
SCALE FACTORS
PREC | Precedentedness H 2.48 VH 1.24 N 3.72
FLEX | Development Flexibility H 2.03 N 3.04 H 2.03
RESL | Architecture/Risk Resolution H 2.83 N 4,24 N 4.24
TEAM | Team Cohesion N 3.29 N 3.29 L 4.38
PMAT | Process Maturity N 4.68 N 4.68 N 4.68
Sum of the Scale Factors 15.31 16.49 19.05
Scaling Exponent 1.0631 1.0749 11005
[a] Provided by Omega software development personnel.
Note: These data are hypothetical and are presented for illustrative purposes only.

24 JOURNAL OF MULTISTATE TAXATION AND INCENTIVES February 2020

PROPERTY TAX

lowance for entrepreneurial incentive to
motivate the development project, all di-
rect development costs such as salaries
and wages, and all indirect development
costs, such as taxpayer company over-
head and employment taxes/employee
benefits.

The application of the trended histor-
ical cost method typically estimates the
software RPCN. In many cases, due to
technological advances in programming
languages or programming tools, for ex-
ample, the software RCN may be lower
than the software RPCN.

Software engineering development effort
estimation models. The analyst may apply
development effort estimation models to
estimate either the software RPCN or
RCN. Generally, development effort meas-
urement models were originally devel-
oped to assist software engineers in
estimating the amount of effort, time, and
human resources needed to complete a
software project. These models have been
adapted for valuation purposes.

The primary input to the software en-
gineering cost estimation models is a size-
related metric. Capers Jones, an authority
on software cost estimation, observed:
“Every form of estimation and every com-
mercial software cost-estimating tool
needs the sizes of key deliverables in order

PROPERTY TAX

to complete an estimate”” Jones lists six

types of sizing:

1. Sizing based on lines of code

2. Sizing by extrapolation from function
point analysis

3. Sizing by analogy with similar prod-
ucts of known size

4. Sizing based on “project managers in-
tuition”

5. Sizing based on “programmer’s intu-
ition”

6. Sizing using statistical methods or

Monte Carlo simulation

One sizing metric is the number of
lines of code. The definition of a line of
code and the associated line of code count-
ing conventions vary among the devel-
opment effort estimation models. One
definition of a line of code is as source
code instructions (i.e., instructions as
written by software engineers) or object
code instructions (what the computer
produces after it has compiled, or trans-
lated, the source code into instructions
the computer can more directly process).

Lines of code have meaning only within
the context of the software language em-
ployed. Languages have evolved over time
and can be classified into generations. As
a general observation, higher-generation
languages (i.e., more modern program-
ming languages) require less source code
to perform the same tasks than lower-
generation languages.

The software valuation can also be de-
veloped using different base size units
than source lines of code. Examples of
these include both function points and
object points.

The software engineering development
effort estimation models include the fol-
lowing;

1. The Constructive Cost Model (CO-

COMO) and its derivatives
2. The Software Lifecycle Management

(SLIM) model

These software engineering develop-
ment effort estimation models are con-
sidered “algorithmic” models. This is
because they generate effort estimates
using a set of quantified inputs, such as
number of lines of source code, which is
processed automatically in accordance
with metrics and formulas derived from
the empirical analysis of large databases of
actual software projects.

Typically, the development effort es-
timation models calculate an estimate of
the amount of effort required to develop

February 2020

the software, expressed in terms of per-
son-months. The number of person-
months is multiplied by a blended cost
per person-month to arrive at a cost meas-
urement for the software. The blended
cost per person-month is typically a full
absorption cost (e.g., the cost of a soft-
ware engineer would include benefits,
wages, applicable overhead, etc.).

Other development effort estimation
models include (1) the KnowledgePlan
(kPLAN) model and (2) the SEER for Soft-
ware (“SEER-SEM”) model.

KPLAN. The kPLAN model is a func-
tion point-driven model that incorpo-
rates a historical knowledge database of
project data derived from over 11,000
software projects that have been collected
and researched by Software Productivity
Research, LLC (SPR).

The specific algorithms applied by
kPLAN are proprietary. The model uses
functional metrics to derive predic-
tive/analytical productivity rates given a
significant number of known (or assumed)
parameters. Projects are classified by,
among other things, scope (e.g., program
or application, subsystem), topology {(e.g.,
stand alone, client/server), class (e.g., end-
user developed, IT developed), and type
(e.g., interactive graphical user interface,
multimedia).

The size of the subject software sys-
tem can be expressed in multiple ways,
including function points or lines of code,
by language. The analyst assigns attrib-
ute values that describe the personnel,
technology, process, environment, and
product. kPLAN was updated in 2011
with the release of version 4.4. However,
SPR ceased support for the development
effort estimation model. The model is still
available for download from various soft-
ware archive websites.

SEER-SEM. The SEER-SEM model
is an algorithmic project management
tool designed to estimate, plan, and mon-
itor the estimated effort and resources
necessary for software development proj-
ects. SEER-SEM is actually a group of
models working in concert to provide es-
timates of software development effort,
duration, staffing, and defects.

The following list presents the specific
SEER-SEM metrics and the questions that
these metrics address:

1. Sizing (how large is the project?)
2. Technology (how productive are the
developers?)

JOURNAL OF MULTISTATE TAXATION AND INCENTIVES 25

3. Effort and Schedule Calculation (what
amount of effort and time is needed?)

4. Constrained Effort/Schedule Calcu-
lation (how does the expected outcome
change with constraints?)

5. Activity and Labor Allocation (how
should tasks and labor be allocated?)

6. Cost Calculation (given the effort, du-
ration, and labor, how much will the
project cost?)

7. Defect Calculation (what is the ex-
pected quality of the delivered soft-
ware?)

8. Maintenance Effort Calculation (how
much maintenance will be required?)

9. Progress (how is the project progress-
ing and is it on track to target com-
pletion?)

10.Validity (is the project feasible based
on the technology involved?)

The current SEER-SEM version (ver-
sion 7.3) is the first version of the model
to incorporate all stages of the software
project life cycle. This version relies on
parametric modeling that applies a data-
base of over 20,000 historical software
projects to estimate required project ef-
fort and resources.

This discussion focuses on the appli-
cation of the COCOMO model and the
SLIM model.

COCOMO. The first generation of
COCOMO was developed in the 1980s.
COCOMO was developed by Barry
Boehm, and is descrigbed in Software En-
gineering Economics.” This development
effort estimation model projects the
amount of effort required to develop the
subject software, taking into considera-
tion the size of the programs, the pro-
gram characteristics, and the
environment in which they are to be de-
veloped.

Boehm defined an effort equation in
the basic COCOMO model that estimates
the number of person-months required
to develop a software product as a func-
tion of delivered source instructions. This
person-month estimate includes all phases
of the development from product design
through integration and testing, including
documentation.

Delivered source instructions include
job control language, format statements,
and data definitions. These delivered
source instructions do not include com-
ments. The basic COCOMO model al-
lows for three different software
development modes, with a specific ef-

26 JOURNAL OF MULTISTATE TAXATION AND INCENTIVES

fort equation provided for each develop-
ment mode.

Boehm also introduced the interme-
diate COCOMO model, which refined
the basic COCOMO model by introduc-
ing 15 cost drivers with associated effort
multipliers. The product of these multi-
pliers is defined as the effort adjustment
factor.

The intermediate COCOMO model
modified the three effort equations of the
basic COCOMO model by:

1. adjusting the coefficients in the equa-
tions and

2. including the effort adjustment factor
as a variable in the equations.

A more updated model, COCOMO I,
was developed by researchers at the Unil-
versity of Southern California (USC).
The updated model supports the effort
estimation of a variety of third and fourth
generation language-based projects. It
also incorporates function point analy-
sis as well as adds two new effort drivers.
An online estimation tool encompassing
the COCOMO 1II model is available
through the USC Center for Systems and
Software engineering website.

COCOMO Il actually consists of three
separate models. The most recent and de-
tailed of the three models is the COCOMO
11.2000 post-architecture model. The post-
architecture model allows for increased
effort due to breakage (i.e., code thrown
away due to volatility in project require-
ments) and for automatically translated
and adapted lines of code. Later, this dis-
cussion provides an illustrative example of
a cost approach valuation that applies CO-
COMOIL.

The COCOMO II model post-archi-
tecture software development equation
is defined as follows:

PM = A x (KNSLOC)E x TT EM

where:

PM = Person-months of estimated ef-
fort

A =294, the effort coefficient

KNSLOC = Thousands of new source
lines of code

E = The scaling exponent for effort, a
function of the scale factors

7T EM = The product of the 17 effort
multipliers associated with the cost driv-
ers

The scaling exponent E is defined as
follows:

E=B+(0.01x2SF)

where:

February 2020

B = 0.91, the scaling base-exponent
for effort
3 SF = The sum of the five scale fac-

tors
A third model, COCOMO 111, is cur-

rently being developed by USC and its
project partners with the aim of improv-
ing the model with new and updated soft-
ware cost drivers and new development
paradigms.

SLIM. The SLIM development effort
model was developed by Quantitative
Software Management, Inc. (QSM). QSM
licenses various software development ef-
fort estimation tools incorporating the
model. The SLIM model (also referred to
by commentators and in the academic lit-
erature as the “Putnam model”) estimates
the amount of effort in person-months
required to develop software based on the
following parameters:

1. A project size build-up parameter (a
number representing a range from en-
tirely new software to rebuilt software)

2. The software delivery time

3. The effort required to create the soft-
ware

PROPERTY TAX

EXHIBITS5
Development Effort—COCOMO Il Model

Omega Gas Transmission Company
Internally Developed Software
Cost Approach

Replacement Cost New less Depreciation Method

Development Effort - COCOMO Il Model
As of January 1, 2019

Actual
Application Replacement Replacement
Logical Cost New Cost New less
Executable Logical Development Functional Depreciation
Lines Executable Effort Scaling Effort in Functional Obsolescence | Development
Application of Source | Source Lines | Multiplier | Exponent Person- Obsolescence in Person- Effort in
Software Code [a] of Code [a] [b] [b] Months Adjustment [c] Months Person-Months
Program 1 1,375,000 625,000 0.25 1.0631 690 0% - 690
Program 2 1,020,189 485,000 0.4 1.0749 929 20% 186 743
Program 3 35,000 355,000 0.56 11005 1,055 0% - 1,055
2,430,189 1,465,000 2,674 186 2,488

[b] As presented in Exhibit 4.

indicated by Omega IT personnel.

[a] Omega management provided the logical executable source lines of code for the software.
[c] A 20 percent obsolescence adjustment was applied for program 2 based on eight years remaining of a 10-year UEL of the program, as

Note: These data are hypothetical and are presented for illustrative purposes only.

4. The expected rate of defective software
5. A productivity environment factor

The SLIM model applies a knowledge
base of project data derived from over
13,000 actual software projects that were
collected and researched by QSM. The
SLIM model is regularly updated in order
to provide accurate estimates as infor-
mation technology improves.

The SLIM model allows users to spec-
ify the subject software project’s envi-
ronment by identifying the industry
function for which that software will be
used. The SLIM model applies a primary
trend group to benchmark the software
against the QSM industry database and
compares software development projects.

PROPERTY TAX

The QSM primary trend groups in-
clude (1) all systems, (2) microcode and
firmware, (3) real time, (4) system soft-
ware, (5) command and control, (6)
telecommunications, (7) scientific, (8)
process control, (9) business, (10) real
time, (11) engineering, (12) business agile,
(13) business financial, (14) business gov-
ernment, (15) business web, and (16) pack-
age implementation.

The SLIM model also allows users to
alter their software development estimates
based on various sizing units. The base
size unit is source lines of code. Below,
this discussion presents an illustrative de-
velopment effort estimation analysis that
applies the SLIM model.

February 2020

Source lines of code adjustments. The soft-
ware engineering development effort es-
timation models often rely on an input of
source lines of code. The analyst may need
to make adjustments to the taxpayer-pro-
vided source lines of code. These line of
code adjustments may include:

1. removing copybook lines of code,

2. determining any differences between
“actual” and “ideal” source lines of code,
and

3. adjusting physical source lines of code
to reflect logical executable lines of
source code.

Copybook lines of code. In an ef-
fort to reduce the amount of time required
to write large quantities of code, software

JOURNAL OF MULTISTATE TAXATION AND INCENTIVES 27

At e, Mot vniss. s

VTR MMM L 80 1 b

—— I

g

EXHIBIT 6
Development Effort—SLIM Model

Omega Gas Transmission Company
Internally Developed Software
Cost Approach

Replacement Cost New less Depreciation Method

Development Effort - SLIM Model
As of January 1, 2019

Replacement
Cost New Replacement
Logical Development Functional Cost New less
Executable Effort in Functional Obsolescence Depreciation
Application Primary Trend Source Lines | Person-Months Obsolescence in Person- Development Effort
Software Group [a] of Code [b] [c] Adjustment [d] Months in Person-Months
Program 1 Business 625,000 820 0% = 820
Program 2 Business 485,000 684 20% 137 547
Program 3 Business 355,000 544 0% E 544
1,465,000 2,048 137 1,91

[a] Based on the planned use and function of the software programs.

[b] Omega management provided the logical executable source lines of code for the software.

[¢] Derived by the analyst applying the SLIM software engineering cost estimation model {details not presented).
{d] A 20 percent obsolescence adjustment was applied for program 2 based on eight years remaining of a 10-year UEL of the program, as indicated by Omega IT personnel.
Note: These data are hypothetical and are presented for illustrative purposes only.

developers may use copybooks as a way
to limit the amount of duplicate code that
needs to be written for a particular pro-
gram. Copybooks may be written once
and then copied into the source lines of
code for multiple programs. If the ana-
lyst included all copybooks found in any
internally developed software, the num-
ber of source lines of code may be over-
stated.

The analyst may make an effort to de-
termine how many copybook lines of
code are original (i.e., written) and how
many copybook lines of code are du-
plicative (i.e., copied). The analyst may re-

28 JOURNAL OF MULTISTATE TAXATION AND INCENTIVES

duce the source lines of code to include
only the originally written copybook
lines of code.

Actual and ideal source lines of
code. The analyst may encounter soft-
ware that would not be written in the same
language if replaced or may simply be
written more efficiently if replaced. These
cases may be classified as “actual” and
“ideal” lines of code. The adjustment for
differences between “actual” and “ideal”
source lines of code may be a result of in-
dividual software developer style or dif-
ferences in the programming language
used.

February 2020

When performing an RCN analysis,
the analyst may determine which, if any,
programs would be written in a higher-
generation language (which tends to be
more efficient and requires less written
code) and whether or not those programs
would be replaced using fewer source lines
of code.

Physical executable to logical ex-
ecutable lines of code. The specific line
of code size measure that is used by both
COCOMO 11 and SLIM is logical exe-
cutable lines of code. In order to define
logical executable lines of code, the ana-
lyst should understand:

PROPERTY TAX

1. the difference between logical and
physical lines of code, and

2. the difference between executable and
nonexecutable lines of code.

A physical line of code may be thought
of as:

1. oneline as typed by a programmer (i.c.,
before deliberately beginning a new
line), or

2. one printed line on a program listing.
Alogical line of code can be thought of

as one logical program instruction. Many

programming languages allow the soft-
ware engineer to spread one logical pro-
gram instruction over two or more physical
lines. Some programming languages allow
the software engineer to place two or
more logical program instructions on the
same physical line. Therefore, the num-
ber of logical lines of code in a program is
generally less than the number of physi-
cal lines of code in that program.
Executable lines of code are those lines
of code that are ultimately executed when
the program is run (though the source
lines of code will first be converted to ma-
chine code). Examples of nonexecutable
lines of code are comment lines and blank
lines. In other words, the program would
run in the same manner regardless of the

PROPERTY TAX

number of comment lines and blank lines.
The use of logical executable lines of code
reduces the effect of programmer style on
the number of source lines of code, fo-
cusing instead on the functionality of the
source lines of code. If necessary, the an-
alyst may adjust physical lines of code to
reflect logical executable lines of code.

Obsolescence Adjustments

When applying the cost approach to value
software, the analyst should make neces-
sary adjustments for obsolescence. Ad-
justments are made to account for losses
in value resulting from:

1. physical deterioration,

2. functional obsolescence, and

3. external obsolescence.

Physical deterioration is a loss in value
of the intangible property brought about
by wear and tear, action of the elements,
disintegration, use in service, and all phys-
ical factors that may reduce life and serv-
iceability.

Functional obsolescence is the loss in
value caused by the inability of the in-
tangible property to adequately perform
the function for which it is utilized. Func-
tional obsolescence is, therefore, internal
to the intangible property. Functional ob-
solescence is often related to such factors
as property superadequacies, excess prop-
erty operating costs, and property inade-
quacies.

External obsolescence (and economic
obsolescence, a component of external
obsolescence) is aloss in value caused by
external forces, such as changes in the
supply/demand relationship, legislative
enactments, and other external factors.
Those other external factors may include
industry and local economic conditions
that affect the value of the intangible prop-
erty.

In a software valuation, all forms of
obsolescence may be considered. Func-
tional obsolescence may not be evident
in software that is properly maintained.
However, the analyst may consider the
extent of any functional obsolescence.

When an RPCN method, such as the
trended historical cost method, is applied
to value software, technological obsoles-
cence can be significant. This factor is due
to increasing productivity and techno-
logical advances over time.

The application of an RCN method
typically eliminates the productivity-re-

February 2020

lated technological obsolescence. How-
ever, other adjustments for technological
obsolescence may be necessary. The eco-
nomic obsolescence component of ex-
ternal obsolescence usually has more
relevance with respect to product soft-
ware. This form of obsolescence may be ex-
amined in the valuation of operational
software as well.

Although the depreciation of tangible
personal property is often estimated using
depreciation schedules, properly main-
tained software typically does not become
obsolete in any predictable, continuous
way.

Software value tends to vary over time
by a relatively small amount due to (1) in-
creasing productivity/technological ad-
vances, on the one hand, and (2) increasing
labor costs and software enhancements, on
the other hand, until the (usually unpre-
dictable) point in time that its replace-
ment is contemplated, for any number of
reasons. Therefore, the estimate of obso-
lescence for properly maintained soft-
ware by “depreciating” it over some time
period may be unsupportable.

Useful economic life analysis. The useful
economic life (UEL) estimation may be
a consideration in each of the software
valuation approaches. In the cost approach,
a UEL analysis may be performed in order
to estimate the total amount of obsoles-
cence, if any, from the estimated measure
of cost—that is, either RPCN, RCN, or
trended historical cost. The analysts as-
sessment of UEL may have a measurable
effect on the software value. Normally, a
longer UEL would indicate a higher soft-
ware value. A shorter UEL would indi-
cate a lower software value.

Cost per person-time. The cost per per-
son-time (where time is measured in hours,
months, or years) is a full absorption cost.
That cost includes the average base salary
of the software development team and
other factors. These other factors include,
but are not limited to, perquisites, payroll
taxes, employee benefits (life, health, dis-
ability, and dental insurance, pension
plans, and continuing education), and an
allocation of overhead (which includes
secretarial support, office space, computer
use, supplies, marketing, management,
and supervisory time).

The analyst may gather information
regarding the number of software devel-

JOURNAL OF MULTISTATE TAXATION AND INCENTIVES 29

opment employees, their job grades or
level, as well as job titles within the IT de-
partment, and the average salary by job
title. The analyst may also require data
regarding the various overhead factors,
such as retirement plans, medical and life
insurance, company pension plan con-
tribution, and salary incentives and
bonuses.

The analyst may also have to make ad-
justments for (1) developer’s profit and
(2) entrepreneurial incentive into the full
absorption cost estimate. A discussion of
these cost components follows.

Developer’s profit. Developer’s profit is
the expected return an intangible asset
developer expects to receive over the di-
rect costs and indirect costs (including
materials, labor, and overhead) related to
the asset da::\ft:l();:vment.12 The analyst may
estimate the developer’s profit as a per-
centage return on the taxpayer’s invest-
ment in direct costs and indirect costs to
replace the software.

The analyst may consider guideline
publicly traded companies in the com-
puter programming services industry in
order to identify a reasonable developer’s
profit. One procedure is to analyze the
operating profit margins of a selection of
guideline publicly traded companies. Since
the operating profit margin is based on a
return on sales and the developer's profit
is based on the cost of development, the
analyst may convert the selected operat-
ing profit margin to a developer’s profit
margin applying the following formula:

Operating profit margin + (1 - Oper-
ating profit margin) = Developers profit
margin

The developer’s profit margin that re-
sults from this formula is a percentage
that is applied to the direct cost and in-
direct cost of development to calculate
the total direct cost, indirect cost, and de-
veloper’s profit. For example, operating
profit thatis 7.7 percent greater than the
total cost of development is mathematically
equivalent to a profit margin of 7.1 percent
(minor differences are due to rounding).
If a developer incurred total direct and
indirect development costs of $100.00,
the developer would require income of
$107.70 (i.e., $7.70 of profit) to achieve
an operating profit margin of 7.1 percent.
In this example, the operating profit mar-
gin is calculated as $7.70 of profit divided
by $107.70 of total income.

30 JOURNAL OF MULTISTATE TAXATION AND INCENTIVES

Entrepreneurial incentive. The analyst may
also estimate entrepreneurial incentive
by considering the following:

1. A rate of return, as indicated by the
taxpayer management.

2. The estimate of the amount of time re-
quired to replace the software, as in-
dicated by the taxpayer management.

3. The sum of the estimated software de-
veloper’s profit and direct and indirect
replacement costs incurred during the
estimated time required to replace the
software.

Entrepreneurial incentive may con-
sider estimates of the amount of time re-
quired to replace the software.

Illustrative'Software
Valuation Example

Lets assume that Omega Gas Transmission
Company (“Omega’) is an intrastate natu-
ral gas pipeline company. Omega is assessed
in its taxing jurisdiction based on the unit
valuation principle. Let’s assume that the
assessment authority values the Omega
total unit of operating property at $100 mil-
lion as of January 1, 2019. Lets assume that
intangible personal property is not subject
to property taxation in the taxing jurisdic-
tion. Omega owns internally developed
software that is used to operate its com-
pressor stations and its pipeline operations.

Omega retained an analyst to estimate
the value of this software as of January
1,2019, the relevant SALT valuation date.
Based on this valuation, the taxpayer can
exclude the value of that intangible per-
sonal property from the total unit value.

The analyst decided to apply the cost
approach and the RCNLD method to value
the Omega software as of January 1, 2019.
To simplify this illustrative example, let’s
assume that software is the only intangi-
ble personal property that is owned and
operated by Omega as of January 1, 2019.

Summary of exhibits. Exhibit 1 presents
the summary of the RCNLD value indi-
cations using several software engineer-
ing development effort estimation models.

Exhibit 2 presents the full absorption
cost per person-month used in the valu-
ation of the Omega software. This analy-
sis includes direct costs and indirect costs,
as well as the developer’s profit and en-
trepreneurial incentive.

Exhibit 3 presents the effort multiplier
and scaling exponent factors used in the

February 2020

COCOMO II software development ef-
fort estimation formula,

Exhibit 4 presents the cost driver rat-
ings and associated effort multipliers and
scaling exponent factors attributable to
the subject software.

Exhibit 5 presents the application of
the COCOMO 1I model in determining
the person-months required to replace
the subject software.

Exhibit 6 presents the application of
the SLIM model in determining the per-
son-months required to replace the sub-
ject software.

Cost approach—RCNLD method. The

process of how the analyst performs the

valuation of the Omega software is sum-
marized as follows:

1. The analyst is provided the COCOMO
variables that correspond to each pro-
gram in the Omega software, as pre-
sented in Exhibit 4.

2. The analyst matches the provided CO-
COMO variables for each program to
the values in the COCOMO equation,
as presented in Exhibit 3.

3. The analyst is provided with the SLIM
primary trend group for each program
in the Omega software, as presented
in Exhibit 6.

PROPERTY TAX

4. The analyst is provided with logical
executable source lines of code for the
software, as presented in Exhibits 5
and 6.

5. The analyst inputs the indicated effort
multiplier and scaling exponent, and the
provided logical executable lines of source
code into the COCOMO 1 post-archi-
tecture equation to estimate the num-
ber of person-months to replace each
program, as presented in Exhibit 5.

6. The analyst inputs the logical exe-
cutable source lines of code for each
of the programs into the SLIM model
to estimate the number of person-
months to replace the program, as pre-
sented in Exhibit 6.

7. The analyst makes an adjustment for
the obsolescence to any programs that
are scheduled to be retired, as presented
in Exhibits 5 and 6. The functional ob-
solescence adjustment is based on the
expected retirement date and the sub-
ject software’s UEL.

8. To simplify this illustrative example,
let’s assume that there is no economic
obsolescence related to the Omega
total unit of operating property. There-
fore, the analyst does not have to apply
any economic obsolescence adjust-
ment,

PROPERTY TAX

9. The analyst estimates the software per-
son-month development effort based
on the average of the RCNLD devel-
opment effort in person-months in-
dications from the two development
effort estimation models: COCOCO
11 and SLIM, as presented in Exhibit 1.

10.The analyst is provided with the head
count and associated costs related to
the Omega software development per-
sonnel, as presented in Exhibit 2.

11.The analyst applies a 5 percent devel-
oper’s profit and a 12 percent entre-
preneurial incentive to reflect the profit
motive and opportunity cost associ-
ated with developing the Omega soft-
ware, as presented in Exhibit 2.

12.The analyst calculates the full absorp-
tion cost per person-month, as pre-
sented in Exhibit 2.

13.The analyst multiplies the full absorption
cost and the average development ef-
fort in person-months (estimated using
the development effort estimation mod-
els) to arrive at the RCN of the Omega
software, as presented in Exhibit 1.

14.0ther than the functional obsoles-
cence components already considered
in the RCN calculation, the analyst
concluded that there is no additional
functional obsolescence.

February 2020

it

15.The analyst concluded that there is no
economic obsolescence associated with
the ownership and operation of the

Omega software.

As presented in Exhibit 1, the analyst
concludes that the value of the Omega
software, as of the January 1,2019, valu-
ation date, is $23 million (rounded).

Effect on the Property
Tax Assessment

The value of the Omega total unit of op-
erating property—that is, tangible prop-
erty and intangible property—was
estimated as $100 million. This taxpayer
total unit value included the value of the
software intangible personal property.

As presented in Exhibit 1, the value of
the software was $23 million as of the Jan-
uary 1, 2019, valuation date. Subtracting
the value of the software intangible per-
sonal property yields a value of $77 mil-
lion ($100 million total unit value less $23
million intangible personal property) in
order to conclude the $77 million value
of the Omega taxable tangible property
as of January 1, 2019. Therefore, the soft-
ware valuation resulted in reducing the
Omega SALT assessment by more than
20 percent. l

JOURNAL OF MULTISTATE TAXATION AND INCENTIVES 31

